Constants: $\epsilon 0=8.85*10^{-12} \text{ As/Vm}$ $\mu 0=4\pi*10^{-7} \text{ Vs/Am}$ $k=1.38*10^{-23} \text{ J/K}$ $e=-1.60*10^{-19} \text{ C}$				
1.	$Z_{c} = \frac{1}{j \cdot \omega \cdot C} = X_{c} \cdot e^{-j\frac{\pi}{2}} \qquad i_{c} = C \cdot \frac{dv_{c}}{dt}$	Complex impedance of a capacitor. Current through a capacitor.		
2.	$Z_{L} = j \cdot \omega \cdot L = X_{L} \cdot e^{j\frac{\pi}{2}} \qquad v_{L} = L \cdot \frac{di_{L}}{dt}$	Complex impedance of an inductor. Voltage across an inductor.		
3.	$T(j \cdot \omega) = \frac{1}{1 + \left(\frac{2d}{2\pi \cdot f_n}\right)j \cdot \omega + \left(\frac{j \cdot \omega}{2\pi \cdot f_n}\right)^2}$	Second order transfer function in normal form.		
4.	$T(j \cdot \omega) = \frac{1}{1 + j \cdot \omega \cdot RC + (j \cdot \omega)^2 LC}$	RLC low-pass filter. Transfer function. Characteristic impedance. Damping ratio.		
	$Z_0 = \sqrt{\frac{L}{C}} \qquad d = \frac{R}{2 \cdot Z_0} \qquad Q = \frac{1}{2d}$			
5.	$f_n = \frac{1}{2\pi \cdot \sqrt{LC}} \qquad \qquad f_r = f_n \sqrt{1 - d^2} \text{for} d < 1$	RLC low-pass filter. Resonant frequency of undamped and damped system.		
6.	$\delta = d \cdot \omega_n = \frac{R}{2L} \qquad \qquad V_{overshoot} = V_{step} \cdot e^{\sqrt{\frac{1}{d^2} - 1}}$	RLC low-pass filter. Decay constant. Estimation of overshoot.		
7.	$Tr_{composite} = \sqrt{\sum_{i=1}^{n} Tr_i^2}$ $f_{3dB} = \frac{K}{Tr_{10\%-90\%}}$	Composite rise time of a linear system. Knee frequency of a signal. K≈0.35 for common pulse shapes.		
8.	$T_r = RC \cdot \left(\ln \left(\frac{100\%}{10\%} \right) - \ln \left(\frac{100\%}{90\%} \right) \right) \approx 2.2RC$	Rise time (10%-90%) of an RC low-pass filter, and a critically damped RLC low-pass filter.		
	$T_r \approx 3.4\tau = 3.4\sqrt{LC}$			
9.	$f(t) = \frac{A}{2} + \sum_{n=1,3,5\dots}^{\infty} \frac{2A}{\pi} \cdot \frac{1}{n} \left[\sin(2\pi \cdot f_0 \cdot n \cdot t) \right]$	Fourier series of a square wave signal with a duty cycle of 50%.		
10.	$Crosstalk = \frac{R \cdot i_{mutual}}{\Delta Va} = \frac{R \cdot C_{mutual}}{Tr}$	Capacitive crosstalk		
11.	$Crosstalk = \frac{L_{mutual}}{R \cdot Tr}$	Inductive crosstalk		

EE6471: TABLE OF EQUATIONS AND CONSTANTS

Karl Rinne

12.	$E_{R} = \frac{1}{2}C \cdot (V_{end} - V_{start})^{2} = \frac{1}{2}C \cdot \Delta V^{2}$	Heat energy per cycle in charge and discharge resistor each
13.	$P_{internal} = P_{static} + C_{PD} \cdot Vcc^2 \cdot f_{cycle}$	Internal power dissipation of an integrated circuit
14.	$P_{driver_{dyn}} = C_{load} \cdot Vcc^2 \cdot f_{cycle}$	Dynamic driver power dissipation of an integrated circuit
15.	$T_J = T_{amb} + P_{diss} \cdot \left(Rth_{JC} + Rth_{CAmb}\right)$	Junction temperature of an IC
16.	$L_{rect} \approx 400 \frac{nH}{meter} \cdot \left(x \cdot \ln\left(\frac{2y}{d}\right) + y \cdot \ln\left(\frac{2x}{d}\right) \right)$	Self inductance of a rectangular loop. Dimensions of rectangle x*y. Wire diameter d.
17.	$L_{circ} \approx 614 \frac{nH}{meter} \cdot x \cdot \left(\ln\left(\frac{8x}{d}\right) - 2 \right)$	Self inductance of a circular loop. Circle diameter x. Wire diameter d.
18.	$L_{mutual} \approx 200 \frac{nH}{meter} \cdot \frac{A_1 \cdot A_2}{d^3}$	Mutual inductance between two loops.
19.	$L_{mutual} \approx L_{individual} \cdot \frac{1}{1 + \left(\frac{d}{h}\right)^2}$	Mutual inductance between two transmission lines.
20.	$C_{rwire\ pul} \approx 55.6 \ \frac{pF}{meter} \cdot \left(\ln\left(\frac{4h}{d}\right) \right)^{-1}$	Capacitance and inductance of a suspended round wire above a ground plane
	$L_{rwire\ pul} \approx 200 \frac{nH}{meter} \cdot \ln\left(\frac{4h}{d}\right)$	
21.	$l_r = Tr \cdot v_p$	Effective length of rising edge
22.	$Z_0 = \sqrt{\frac{R + pL}{G + pC}}$	Characteristic impedance of a transmission line.
23.	$A = \sqrt{(G + pC)(R + pL)}$	Propagation constant of a transmission line
24.	$H_x(p) = e^{-A \cdot x}$	Voltage transfer function of an infinite transmission line
25.	$T_{p_{pul}} = \sqrt{LC}$	Propagation delay of an LC transmission line
26.	$T_d \approx 0.4 x^2 RC$ $T_r \approx x^2 RC$	Estimation of time delay and rise time for an RC transmission line.
27.	$A = \sqrt{pC(R + pL)} \xrightarrow{p < < \frac{R}{L}} A \approx \sqrt{pRC}$	Estimation of the propagation constant for an RLC transmission line in the RC

		region (p< <r l)<="" th=""></r>
28.	$A = p\sqrt{LC}\sqrt{1 + \frac{R}{pL}} \xrightarrow{Taylor} A \approx p\sqrt{LC}\left(1 + \frac{R}{2pL}\right)$	Estimation of the propagation constant for an RLC transmission line in the LC region (p>>R/L)
29.	$TL_{IA}(p) = \frac{Z_0(p)}{Z_s(p) + Z_0(p)}$	Transmission line input acceptance function.
30.	$TL_{RS}(p) = \frac{Z_{S}(p) - Z_{0}(p)}{Z_{S}(p) + Z_{0}(p)}$	Transmission line source-end and load-end reflection function.
	$TL_{RL}(p) = \frac{Z_{L}(p) - Z_{0}(p)}{Z_{L}(p) + Z_{0}(p)}$	
31.	$S_{\infty}(p) = \frac{TL_{IA}(p) \cdot H_{x}(p) \cdot (1 + TL_{RL}(p))}{1 - TL_{RL}(p) \cdot TL_{RS}(p) \cdot H_{x}(p)^{2}}$	Voltage transfer function for a finite-length transmission line
32.	$\delta = \sqrt{\frac{\rho}{\pi \cdot f \cdot \mu}}$	Skin depth
33.	$f_s = \frac{\rho}{\pi \mu r^2}$	Skin effect frequency
34.	$R_{hf_{pul}} = \frac{1}{2r} \sqrt{\frac{f\mu\rho}{\pi}}$	High frequency resistance of a round conductor due to skin effect
35.	$R_{pul} \approx \sqrt{R_{dcpul}^{2} + R_{hfpul}^{2}}$	Effective resistance of a conductor per unit length
36.	$Z_0 \approx \frac{87\Omega}{\sqrt{\varepsilon_r + 1.41}} \ln\left(\frac{5.98h}{0.8w + d}\right)$	Characteristic impedance of a microstrip transmission line
37.	$T_{p_{pul}} \approx 3.35 \frac{ns}{meter} \sqrt{0.475\varepsilon_r + 0.67}$	Propagation delay (per unit length) of a microstrip transmission line
38.	$Z_0 \approx \frac{60\Omega}{\sqrt{\varepsilon_r}} \ln\left(\frac{1.9b}{0.8w+d}\right)$	Characteristic impedance of a stripline transmission line
39.	$T_{p_{pul}} \approx 3.35 \frac{ns}{meter} \sqrt{\varepsilon_r}$	Propagation delay (per unit length) of a stripline transmission line
40.	$R = R_{sheet} \frac{L}{W}$	Resistance of a uniform slab